F(x)=f(x)/x^2,f(x)在[a,b]连续,在(a,b)可导,如何证明F(x)在[a,b]连续,在(a,b)可导?想不通,因为我基础比较差,
来源:学生作业帮助网 编辑:作业帮 时间:2022/07/02 09:07:33
![F(x)=f(x)/x^2,f(x)在[a,b]连续,在(a,b)可导,如何证明F(x)在[a,b]连续,在(a,b)可导?想不通,因为我基础比较差,](/uploads/image/z/10751365-37-5.jpg?t=F%28x%29%3Df%28x%29%2Fx%5E2%2Cf%28x%29%E5%9C%A8%5Ba%2Cb%5D%E8%BF%9E%E7%BB%AD%2C%E5%9C%A8%28a%2Cb%29%E5%8F%AF%E5%AF%BC%2C%E5%A6%82%E4%BD%95%E8%AF%81%E6%98%8EF%28x%29%E5%9C%A8%5Ba%2Cb%5D%E8%BF%9E%E7%BB%AD%2C%E5%9C%A8%28a%2Cb%29%E5%8F%AF%E5%AF%BC%3F%E6%83%B3%E4%B8%8D%E9%80%9A%2C%E5%9B%A0%E4%B8%BA%E6%88%91%E5%9F%BA%E7%A1%80%E6%AF%94%E8%BE%83%E5%B7%AE%2C)
F(x)=f(x)/x^2,f(x)在[a,b]连续,在(a,b)可导,如何证明F(x)在[a,b]连续,在(a,b)可导?想不通,因为我基础比较差,
F(x)=f(x)/x^2,f(x)在[a,b]连续,在(a,b)可导,如何证明F(x)在[a,b]连续,在(a,b)可导?
想不通,因为我基础比较差,
F(x)=f(x)/x^2,f(x)在[a,b]连续,在(a,b)可导,如何证明F(x)在[a,b]连续,在(a,b)可导?想不通,因为我基础比较差,
令f(x)=(∫b a f(t)dt ) x^2 -(2∫b a 1dt)x +(∫b a 1/f(t)dt),则:
f(x)=∫b a f(t) x^2 dt -2∫b a xdt +∫b a 1/f(t)dt
=∫b a [f(t) x^2 -2x +1/f(t)]dt=∫b a {[f(t)^0.5 x -1/f(t)^0.5]^2}dt ≥0
故这个关于x的二次函数f(x)的判别式应小于等于0,即:
△=(2∫b a 1dt)^2 -4(∫b a f(t)dt )(∫b a 1/f(t)dt)=4(b-a)^2 -4(∫b a f(t)dt )(∫b a 1/f(t)dt)≤0
即:(∫b a f(t)dt )(∫b a 1/f(t)dt)≥(b-a)^2
把t换成x即为要证明的结论
注:实际上这就是积分形式的柯西不等式.
f(X)=f(X+2)(x
f(x+2)>=f(x)+2,f(x+3)
f(x)=x^2+x (x
设函数f(X)在[-a,a]连续,则下列函数必为偶函数的是A x[f(X)+f(-x)]B x[f(x)-f(-x)]C x+f(X^2)D (f(X))^2而且我不懂 F(X)=f(X)+f(-x) 为什么是偶函数F(X)=f(X)-f(-x)为什么是奇函数
f(x)=sinx,求导f('f(x)),f(f'(x)),[f(f(x))]'
若f(x)满足f(x)-2f(1/x)=x,则f(x)=?
若F(x)满足f(x)+2f(1/x)=x,则f(x)=
设函数f(x)满足f(x)+2f(1/x)=x,求f(x)
已知f(x)满足2f(x)+f(1/x)=3x,求f(x)
F(X)满足F(x)+2f(x分之1)=3X,求f(x)
已知f(x)满足2f(x)+f(1/x)=3x,求f(x)?
已知f(x)满足2f(x)+f(-x)=-3x+1,求f(x)
f(x)满足:2f(x)-f(1/x)=x+1,求f(x)
已知f(x)满足f(x)+2f(1/x)=3x,求f(x) ,
x-2 ,X>=0 f(x)=f[f(x+5)],x分段函数f(x)= x-2 ,X>=0 f[f(x+5)],x
设f(x)满足f(-x)=-f(x),f(x)=f(4-x),x∈[0,2)时,f(x)=x,则f(11.5)等于?
f(x)=x,x
f(x)+f((x-1)/x)=2x; x!=0,1; 求f(x)