高中生物必修二的全部知识点!求完整点的

来源:学生作业帮助网 编辑:作业帮 时间:2024/04/27 17:28:47
高中生物必修二的全部知识点!求完整点的

高中生物必修二的全部知识点!求完整点的
高中生物必修二的全部知识点!
求完整点的

高中生物必修二的全部知识点!求完整点的
生物必修2知识点
必修②
第一章第一节
1.孟德尔通过分析 豌豆杂交实验 的结果,发现了 生物遗传 的规律.
2.孟德尔在做杂交实验时,先除去未成熟花的全部雄蕊,这叫做 去雄 .
3.一种生物的同一性状的不同表现类型,叫做 相对性状 .
4.孟德尔把F1显现出来的性状,叫做 显性性状 ,未显现出来的性状叫做 隐性性状 .在杂种后代中,同时出现 显性性状 和 隐性性状 的现象叫做 性状分离 .
5.孟德尔对分离现象的原因提出了如下假说:
(1)生物的性状是由 遗传因子 决定的,其中决定显现性状的为 显性遗传因子 ,用 大写字母 表示,决定隐性性状的为 隐性遗传因子 ,用 小写字母 表示.
(2)体细胞中的 遗传因子 是成对存在的, 遗传因子 组成相同的个体叫做 纯合子 , 遗传因子 组成不同的个体叫做 杂合子 .
(3)生物体在形成生殖细胞——配子时, 成对的遗传因子 彼此分离,分别进入 不同的配子 中,配子中只含有 每对遗传因子 的一个.
(4)受精时, 雌雄配子 的结合是随机的.
6.测交是让 F1 与 隐性纯合子 杂交.
7.孟德尔第一定律又称 分离定律 .在生物的体细胞中,控制同一性状的 遗传因子 成对存在的,不相融合,在形成配子时,成对的 遗传因子 发生分离,分离后的 遗传因子 分别进入不同配子中,随 配子 遗传给后代.

第一章第二节
1.孟德尔用纯种黄色圆粒豌豆和纯种绿色皱粒豌豆作亲本杂交,无论 正交 还是 反交 ,结出的种子(F1)都是 黄色圆粒 .这表明 黄色 和 圆粒 是显性性状, 绿色 和 皱粒 是隐性性状.
2.孟德尔让黄色圆粒的F1自交,在产生的F2中发现了黄色圆粒和绿色皱粒,还出现了亲本所没有的性状组合 绿色圆粒 和 黄色皱粒 .
3.纯种黄色圆粒和纯种绿色皱粒豌豆的遗传因子组成分别是YYRR和yyrr,它们产生的F1遗传因子组成是 YyRr ,表现为 黄色圆粒 .
4.孟德尔两对相对性状的杂交实验中,F1(YyRr)在产生配子时,每对遗传因子彼此 分离 ,不同对的遗传因子可以 自由组合 .F1产生的雌配子和雄配子各有4种: YR、Yr、yR、yr ,数量比例是: 1:1:1:1 .受精时,雌雄配子的结合是 随机 的,雌、雄配子结合的方式有 16 种,遗传因子的结合形式有 9 种: YYRR、YYRr、YYrr、YyRR、YyRr、Yyrr、yyRR、yyRr、yyrr .性状表现有 4 种: 黄色圆粒、黄色皱粒、绿色圆粒、绿色皱粒 ,它们之间的数量分比是 9:3:3:1 .
5.让子一代F1(YyRr)与隐性纯合子(yyrr)进行杂交,无论是F1作 母本 ,还是作 父本 ,后代表现型有 4 种: 黄色圆粒、黄色皱粒、绿色圆粒、绿色皱粒 ,它们之间的比例是 9:3:3:1 ,遗传因子的组合形式有 9 种: YYRR、YYRr、YYrr、YyRR、YyRr、Yyrr、yyRR、yyRr、yyrr .
6.孟德尔第二定律也叫做 自由组合定律 ,控制不同性状的遗传因子的 分离 和 组合 是互不干扰的,在形成配子时,决定 同一性状 的遗传因子彼此分离,决定 不同性状的遗传因子 自由结合.
7.1909年,丹麦生物学家 约翰逊 给孟德尔的“遗传因子”一词起名叫做 基因 ,并提出了 表现型 和 基因型 的概念.
8.表现型指 生物个体表现出来的性状 ,控制 相对性状 的基因叫做等位基因,与表现型有关的基因组成叫做 基因型 .



第二章第一节
1.减数分裂是进行 有性生殖 的生物在产生 成熟生殖细胞 时,进行的染色体数目 减半 的细胞分裂.在减数分裂过程中,染色体只复制 一次 ,而细胞分裂 两次 ,减数分裂的结果是 成熟生殖细胞 中的染色体数目比 原始生殖的细胞 的减少一半.
2.精原细胞是 原始 的雄性生殖细胞,每个体细胞中的染色体数目都与 体细胞 的相同.
3.在减数第一次分裂的间期,精原细胞的体积增大,染色体复制,成为初级精母细胞,复制后的每条染色体都由两条 姐妹染色单体 构成,这两条 姐妹染色单体 由同一个 着丝点 连接.
4.配对的两条染色体,形状和大小一般都相同,一条来自 父方 ,一条来自 母方 ,叫做 同源染色体 ,同源染色体 两两配对的现象叫做联会.
5.联会后的每对同源染色体含有四条 染色单体 ,叫做 四分体 .
6.配对的两条同源染色体彼此分离,分别向细胞的两极移动发生在 减数第一次分裂 时期.
7.减数分裂过程中染色体的减半发生在 减数第一次分裂.
8.每条染色体的着丝点分裂,两条姐妹染色体也随之分开,成为两条染色体发生在 减数第二次分裂 时期.
9.在减数第一次分裂中形成的两个次级精母细胞,经过减数第二次分裂,形成了四个 精细胞 ,与初级精母细胞相比,每个精细胞都含有数目 减半 的染色体.
10.初级卵母细胞经减数第一次分裂,形成大小不同的两个细胞,大的叫做 次级卵母细胞 ,小的叫做 极体 , 次级卵母细胞 进行第二次分裂,形成一个大的 卵细胞 和一个小的 极体 ,因此一个初级卵母细胞经减数分裂形成一个 卵细胞 和三个 极体 .
11.受精作用是 卵细胞 和 精子 相互识别,融合成为 受精卵 的过程.
12.经受精作用受精卵中的染色体数目又恢复到 体细胞 中的数目,其中有一半的染色体来自 精子(父方),另一半来自 卵细胞(母方) .

第二章第二节
1.基因与染色体行为存在着明显的平行关系.
(1)基因在杂交过程中保持 完整性 和 独立性 ,染色体在配子形成和受精过程中,也有相对稳定的 形态结构 .
(2)在体细胞中基因 成对 存在,染色体也是 成对 的.在配子中基因只有 一个 ,同样,染色体也只有 一条 .
(3)体细胞中成对的基因一个来自 父方 ,一个来自 母方 ,同源染色体也是.
2.果蝇的一个体细胞中有多对染色体,其中 3 对是常染色体, 1 对是性染色体,雄果蝇的一对性染色体是 异型 的,用 XY 表示,雌果蝇一对性染色体是 同型 的,用 XX 表示.
3.红眼的雄果蝇基因型是 XWY ,红眼的雌果蝇基因型是 XWXw /XWXW ,白眼的雄果蝇基因型是 XwY ,白眼的雌果蝇基因型是 XwXw .
4.美国生物学家 摩尔根 和他的学生们经过十多年的努力,发现了说明基因位于 染色体 上的相对位置的方法,并绘出了第一个果蝇各种基因在 染色体 上相对位置图,说明基因在 染色体 上呈 线性 排列.
5.基因分离定律的实质是:在杂合体的细胞中,位于一对同源染色体上的 等位基因 ,具有一定的 独立性 ,在分裂形成配子的过程中, 等位基因 会随同源染色体分开而分离,分别进入两个配子中,独立地随配子遗传给后代.
6.基因自由组合定律的实质是:位于非同源染色体上的 非等位基因 的分离或组合是互不干扰的,在减数分裂过程中,同源染色体上的 等位基因 彼此分离的同时,非同源染色体上的 非等位基因 自由组合.


第二章第三节
1.位于性染色体上的 基因 控制的性状在遗传上总是和 性别 相关联,这种现象叫做 伴性遗传 .
2.伴X隐性遗传的遗传特点:
(1)隐性致病基因及其等位基因只位于 X 染色体上.
(2)男性患者 多于 女性患者.
(3)往往有 隔代 遗传现象.
(4)女患者的 儿子 一定患病.(母病子必病)
3.伴X显性遗传的遗传特点:
(1)显性的致病基因及其等位基因只位于 X 染色体上.
(2)女性患者 多于 男性患者.
(3)具有世代连续性.
(4)男患者的 女儿 一定患病.(父病女必病)
4.表示一个家系的图中,通常以正方形代表 男性 ,圆形代表 女性 ,以罗马数字代表(如I、Ⅱ等) 代 ,以阿拉伯数字表示(如1、2等) 个体 .
5.人类的X染色体和Y染色体无论在 大小 和携带的 基因 种类上都不一样,X染色体上携带着许多基因,Y染色体只有X染色体大小的1/5左右,携带的基因比较 少 .

第三章第一节
1.染色体是由 DNA 和蛋白质组成的,其中 DNA 是一切生命现象的体现者.在有丝分裂、 受精作用 和减数分裂 过程中具有重要的连续性.
2.DNA是遗传物质的证据是 肺炎双球菌的转化 实验和 噬菌体侵染细菌 实验.
3.肺炎双球菌的转化试验:
(1)实验目的: 证明什么事遗传物质 .
(2)实验材料: S型细菌、R型细菌 .
菌落 菌体 毒性
S型细菌 表面光滑 有荚膜 有
R型细菌 表面粗糙 无荚膜 无
(3)过程: ① R 型活细菌注入小鼠体内小鼠不死亡.
② S 型活细菌注入小鼠体内小鼠死亡.
③杀死后的 S 型细菌注入小鼠体内小鼠不死亡.
④无毒性的 R 型细菌与加热杀死的 S 型细菌混合后注入小鼠体内,小鼠死亡.
⑤从S型活细菌中提取 DNA 、蛋白质和多糖等物质,分别加入R型活细菌中培养,发现只有加入 DNA ,R型细菌才能转化为S型细菌.
(4)结果分析:①→④过程证明:加热杀死的S型细菌中含有一种“转化因子”;⑤过程证明:转化因子是 DNA .
结论: DNA 是遗传物质.
4.噬菌体侵染细菌的实验:
(1)实验目的: 噬菌体的遗传物质是DNA还是蛋白质 .
(2)实验材料: 噬菌体 .
(3)过程:① T2噬菌体的 蛋白质 被35S标记,侵染细菌.
② T2噬菌体内部的 DNA 被32P标记,侵染细菌.
(4)结果分析:测试结果表明:侵染过程中,只有 DNA 进入细菌,而35S未进入,说明只有亲代噬菌体的 DNA 进入细胞.子代噬菌体的各种性状,是通过亲代的 DNA 遗传的. DNA 才是真正的遗传物质.

5.RNA是遗传物质的证据:
(1)提取烟草花叶病毒的 蛋白质 不能使烟草感染病毒.
(2)提取烟草花叶病毒的 RNA 能使烟草感染病毒.
6.结论 :绝大多数生物的遗传物质是 DNA , DNA 是主要的遗传物质 .极少数的病毒的遗传物质不是 DNA ,而是 RNA .

第三章第二节
1.DNA是一种 高分子 化合物,每个分子都是由成千上百个 4 种脱氧核苷酸聚合而成的长链.
2.结构特点:①由两条脱氧核苷酸链 反向 平行盘旋而成的 双螺旋 结构.
②外侧:由 脱氧核糖 和 磷酸 交替连接构成基本骨架.
③内侧:两条链上的碱基通过 氢键连接 形成碱基对.碱基对的形式遵循 碱基互补配对原则 ,即A一定要和 T 配对(氢键有 2 个),G一定和 C 配对(氢键有 3 个).
3.双链DNA中腺嘌呤(A)的量总是等于 胸腺嘧啶(T)的量.鸟嘌呤(G)的量总是等于 胞嘧啶(C)的量.

第三章第三节
1.DNA的复制概念:是以 亲代DNA 为模板合成 子代DNA 的过程.
2.时间:DNA分子复制是在细胞有丝分裂的 间期 和减数第一次分裂的 间期 ,是随着 染色体 的复制来完成的.
3.场所: 细胞核 .
4.过程:
(1)解旋:DNA首先利用线粒体提供的 能量 在 解旋酶 的作用下,把两条螺旋的双链解开.
(2)合成子链:以解开的每一段母链为 模板 ,以游离的四种脱氧核苷酸为原料 ,遵循 碱基互补配对 原则,在有关酶的作用下,各自合成与母链互补的子链.
(3)形成子代DNA:每一条子链与其对应的 模板 盘旋成双螺旋结构,从而形成 2 个与亲代DNA完全相同的子代DNA.
5.特点:
(1)DNA复制是一个 边解旋边复制 的过程.
(2)由于新合成的DNA分子中,都保留了原DNA的一条链,因此,这种复制叫 半保留复制 .
6.条件:DNA分子复制需要的模板是 DNA母链 ,原料是 游离的脱氧核酸 ,需要能量ATP和有关的酶.
7.准确复制的原因:
(1)DNA分子独特的 双螺旋结构 提供精确的模板.
(2)通过 碱基互补配对 保证了复制准确无误.
8.功能:传递 遗传信息 .DNA分子通过复制,使亲代的遗传信息穿给子代,从而保证了 遗传信息 的连续性.
第三章第四节
1.一条染色体上有 1 个DNA分子,一个DNA分子上有 许多 个基因,基因在染色体上呈现 线形 排列.每一个基因都是特定的 DNA 片段,有着特定的 遗传效应 ,这说明DNA中蕴涵了大量的 遗传信息 .
2.概念:DNA分子上分布着多个基因,基因是具有 遗传效应的DNA 片段,是决定生物性状的 遗传单位 .
3.结构:基因的 脱氧核苷酸 排列顺序,即碱基对的排列顺序.不同的基因含有不同的 遗传信息 .
4.DNA能够储存足够量的遗传信息,遗传信息蕴藏在 4种碱基的排列顺序 之中,构成了DNA分子的 多样性 ,而碱基的特定的排列顺序,又构成了每一个DNA分子的 特异性 .

第四章第一节
1.RNA是在细胞核中,以 DNA的一条链 为模板合成的,这一过程称为 转录 ;合成的RNA有三种: 信使RNA(mRNA) , 转运RNA(tRNA) , 核糖体RNA(rRNA) .
2.RNA与DNA的不同点是:五碳糖是 核糖而不是脱氧核糖 ,碱基组成中有 碱基U(尿嘧啶)而没有T(胸腺嘧啶);从结构上看,RNA一般是 单链 ,而且比DNA短.
3.翻译是指游离在细胞质中的各种 氨基酸 ,以 mRNA为模板,合成具有一定氨基酸顺序的 蛋白质 的过程.
4.mRNA上3个相邻的碱基决定一个氨基酸.每3个这样的碱基称为1个 密码子 .
5.蛋白质合成的“工厂”是 细胞质 ,搬运工是 转运RNA(tRNA) .每种tRNA只能转运并识别 1 种氨基酸,其一端是 携带氨基酸 的部位,另一端有3个碱基,称为 反密码子 .

第四章第二节
1.1957年,克里克提出中心法则 :遗传信息可以从 DNA 流向 DNA ,即DNA的自我复制 ;也可以从 DNA流向 RNA ,进而流向蛋白质,即遗传信息的转录和翻译.但是,遗传信息不能从 蛋白质 传递到 蛋白质 ,也不能从蛋白质流向 RNA或DNA .遗传信息从RNA流向 RNA 以及从RNA流向 DNA 两条途径,是中心法则的补充.
2.基因通过控制 酶 的合成来控制代谢过程,进而控制生物体的性状.
3.基因还能通过控制 蛋白质的结构 直接控制生物体的性状.
4.基因与基因、 基因与基因产物 、基因与环境之间存在着复杂的相互作用,精细的调控着生物体的性状.

第四章第三节
1.克里克的实验证明:遗传密码中 3 个碱基编码1个氨基酸,遗传密码从一个固定的起点开始,以 非重叠 的方式阅读,编码之间没有分隔符.
2.尼伦伯格和马太采用蛋白质体外合成技术,在试管中只加入苯丙氨酸,在加入除去了 DNA 和 mRNA的细胞提取液及人工合成的 RNA ,结果在试管中出现了多聚苯丙氨酸的肽链.

第五章第一节
1.DNA分子中发生碱基对的 替换、增添和缺失 ,而引起的基因结构的改变叫基因突变.
2.基因突变有如下特点:在生物界普遍存在, 随机发出的、不定向的 ,频率很低.
3.基因突变的意义在于:它是 新基因 产生的途径,是 生物变异 的根本来源,是 生物进化 的原材料.
4.基因重组是指 在生物体进行有性生殖的过程中,控制不同形状的基因的重新组合 .





第五章第二节
1.染色体变异包括 结构 变异和 数目 变异.
2.染色体结构的改变,会使排列在染色体上的基因的 数目或排列顺序 发生改变,从而导致性状的变异.
3.染色体数目变异可分为两类:一类是 细胞内个别染色体的增加或减少 ,另一类是 细胞内染色体数目以染色体组的形式成倍地增长或减少 .
4.染色体组是指细胞中的一组 非同源 染色体,在形态和功能上各不相同,携带着控制生物生长发育的全部遗传信息.
5.人工诱导多倍体最常用而且最有效的方法是用 秋水仙素来处理萌发的种子或幼苗 ,其作用机理是能抑制 纺锤体 的形成,导致染色体不能移向细胞两极,染色体完成了复制但不能 减半 ,从而引起细胞内染色体数目加倍.
6.单倍体是指 体细胞中含有本物种配子染色体数目 的个体,在生产上常用于 培育纯种 .

第五章第三节
1.人类遗传病通常是指由于遗传物质改变而引起的人类疾病,主要可以分为 单基因遗传病 、 多基因遗传病 和 染色体异常遗传病 三大类.
2.单基因遗传病是指受 1 对等位基因控制的遗传病,可能由 显 性致病基因引起,也可能由 隐 性致病基因引起.
3.多基因遗传病是指受 2 对以上的等位基因控制的遗传病,主要包括一些 先天性发育异常 和一些常见病,在群体中的发病率较高.
4.染色体异常遗传病由染色体异常引起,如 21三体综合征 ,又叫先天性愚型,患者比正常人多了一条21号染色体,是由于 减数分裂 时21号染色体不能正常分离而形成.
5.人类基因组计划正式启动于1990年,目的是测定 人类基因组的全部DNA 序列,解读其中包含的遗传信息.

第六章第一节
1.杂交育种是将两个或多个品种的 优良性状 通过 交配 集中在一起,再经过 选择和培育 ,获得新品种的方法,它依据的主要遗传学原理是 基因重组 .
2.诱变育种是利用 物理因素 (如 X射线 、 γ射线 、 紫外线 、 激光 等)或 化学因素 (如 亚硝酸 、硫酸二乙酯 等)来处理生物,使生物发生 基因突变 .其优点是 提高突变率、短时间内获得更多的优良变异类型、抗病力强、产量高、品质好 .

第六章第二节
1.基因工程又叫 基因拼接技术 或 DNA重组技术 .通俗地说,就是按照人们的意愿把一种生物的 某种基因 提取出来,加以 修饰改造 ,然后放到 另一种生物的细胞里 , 定向 地改造生物的遗传技术.
2.基因工程最基本的操作工具是基因的剪刀即 限制性核酸内切酶 (简称 限制酶 );基因的针线即 DNA连接酶 ;基因的运载体常用 质粒 、 噬菌体 、 动植物病毒 等.
3.基因工程的操作一般经历四个步骤 提取目的基因 、 目的基因与运载体结合 、 将目的基因导入受体细胞 、 目的基因的表达和检测 .
4.抗虫基因作物的使用,不仅减少了 农药的用量 ,大大降低了 生产成本 ,而且还减少了 农药对环境的污染 .
5.基因工程生产药品的优点是 高效率 、 高质量 、 低成本 .
6.目前关于转基因生物和转基因产品的安全性,有两种观点,一种观点是 转基因生物和转基因食品不安全,要严格控制 ;另一种观点是 转基因生物和转基因食品是安全的,应该大范围推广 .

第七章第一节
1.历史上第一个提出比较完整的进化学说的是法国的博物学家 拉马克 .他的基本观点是地球上所有的生物都不是 神造的 ,而是由 更古老的生物进化 来的;生物是由 低等 到 高等 逐渐进化的;生物的各种适应性特征的形成都是由于 用进废退 和 获得性遗传 . 用进废退和获得性遗传 ,这是生物不断进化的主要原因.
2.达尔文提出了以 自然选择 为中心的进化论,它揭示了生命现象的统一性是由于 所有的生物都有共同的祖先 ,生物的多样性是 进化 的结果.
3.由于受到当时科学发展水平的限制,达尔文不能解释 遗传和变异 ;他对生物进化的解释也仅限于 个体水平 .

第七章第二节
1.现代生物进化理论的主要内容包括:
(1) 种群是生物进化的基本单位 ;
(2) 突变和基因重组产生进化的原材料 ;
(3) 自然选择决定生物进化的方向 ;
(4) 隔离导致新物种的形成 .
2.种群是生活在一定区域中的 同种生物的全部个体 .
3.种群的基因库是该种群中 全部个体所含有的全部基因 .
4.可遗传的变异来源于 基因突变 、 基因重组 和 染色体变异 ,其中 基因突变 和 染色体变异 统称为突变.基因突变产生新的 等位基因 ,就可能使种群的基因频率发生变化. 突变和重组 提供了生物进化的原材料.
5.在自然选择的作用下,种群的基因频率会发生 定向 改变,导致生物朝着 一定 的方向不断进化.
6.物种是能够在自然状态下 相互交配 并且 产生可育后代 的一群生物.
7.隔离是 不同种群 的个体,在自然条件下 基因不能自由交流 的现象.常见的隔离有 生殖隔离 和 地理隔离 .
8.生殖隔离即不同物种之间一般是 不能相互交配 的,即使 交配成功 也不能 产生可育后代 .
9.地理隔离即同一种生物由于 地理上的障碍而分成不同的种群,使得种群间不能发生基因交流 的现象.
10.共同进化是指 不同物种 之间、 生物与无机环境 之间在相互影响中不断进化和发展.
11.生物多样性包括三个层次的内容: 基因 多样性、 物种 多样性和 生态系统 多样性.

特别棒的东西!解析超详细

楼上的已经很全了

生物必修2复习提纲(必修)
第二章 减数分裂和有性生殖
第一节 减数分裂
一、减数分裂的概念
减数分裂(meiosis)是进行有性生殖的生物形成生殖细胞过程中所特有的细胞分裂方式。在减数分裂过程中,染色体只复制一次,而细胞连续分裂两次,新产生的生殖细胞中的染色体数目比体细胞减少一半。
(注:体细胞主要通过有丝分裂产生,有丝分裂过程中,染色体复制一次,细胞分裂...

全部展开

生物必修2复习提纲(必修)
第二章 减数分裂和有性生殖
第一节 减数分裂
一、减数分裂的概念
减数分裂(meiosis)是进行有性生殖的生物形成生殖细胞过程中所特有的细胞分裂方式。在减数分裂过程中,染色体只复制一次,而细胞连续分裂两次,新产生的生殖细胞中的染色体数目比体细胞减少一半。
(注:体细胞主要通过有丝分裂产生,有丝分裂过程中,染色体复制一次,细胞分裂一次,新产生的细胞中的染色体数目与体细胞相同。)
二、减数分裂的过程
1、精子的形成过程:精巢(哺乳动物称睾丸)

 减数第一次分裂
间期:染色体复制(包括DNA复制和蛋白质的合成)。
前期:同源染色体两两配对(称联会),形成四分体。
四分体中的非姐妹染色单体之间常常发生对等片段的互换。
中期:同源染色体成对排列在赤道板上(两侧)。
后期:同源染色体分离;非同源染色体自由组合。
末期:细胞质分裂,形成2个子细胞。
减数第二次分裂(无同源染色体)

前期:染色体排列散乱。
中期:每条染色体的着丝粒都排列在细胞中央的赤道板上。
后期:姐妹染色单体分开,成为两条子染色体。并分别移向细胞两极。
末期:细胞质分裂,每个细胞形成2个子细胞,最终共形成4个子细胞。
2、卵细胞的形成过程:卵巢w.w.w.k.s.5.u.c.o.m

三、精子与卵细胞的形成过程的比较
精子的形成 卵细胞的形成
不同点 形成部位 精巢(哺乳动物称睾丸) 卵巢
过 程 有变形期 无变形期
子细胞数 一个精原细胞形成4个精子 一个卵原细胞形成1个卵细胞+3个极体
相同点 精子和卵细胞中染色体数目都是体细胞的一半
四、注意:
(1)同源染色体①形态、大小基本相同;②一条来自父方,一条来自母方。
(2)精原细胞和卵原细胞的染色体数目与体细胞相同。因此,它们属于体细胞,通过有丝分裂
的方式增殖,但它们又可以进行减数分裂形成生殖细胞。
(3)减数分裂过程中染色体数目减半发生在减数第一次分裂,原因是同源染色体分离并进入不同的子细胞。所以减数第二次分裂过程中无同源染色体。
(4)减数分裂过程中染色体和DNA的变化规律

(5)减数分裂形成子细胞种类:
假设某生物的体细胞中含n对同源染色体,则:
它的精(卵)原细胞进行减数分裂可形成2n种精子(卵细胞);
它的1个精原细胞进行减数分裂形成2种精子。它的1个卵原细胞进行减数分裂形成1种卵细胞。
五、受精作用的特点和意义
特点: 受精作用是精子和卵细胞相互识别、融合成为受精卵的过程。精子的头部进入卵细胞,尾部留在外面,不久精子的细胞核就和卵细胞的细胞核融合,使受精卵中染色体的数目又恢复到体细胞的数目,其中有一半来自精子,另一半来自卵细胞。
意义:减数分裂和受精作用对于维持生物前后代体细胞中染色体数目的恒定,对于生物的遗传和变异具有重要的作用。
六、减数分裂与有丝分裂图像辨析步骤:
一看染色体数目:奇数为减Ⅱ(姐妹分家只看一极)
二看有无同源染色体:没有为减Ⅱ(姐妹分家只看一极)
三看同源染色体行为:确定有丝或减Ⅰ
注意:若细胞质为不均等分裂,则为卵原细胞的减Ⅰ或减Ⅱ的后期。
同源染色体分家—减Ⅰ后期
姐妹分家—减Ⅱ后期
第二节 有性生殖
1.有性生殖是由亲代产生有性生殖细胞或配子,经过两性生殖细胞(如精子和卵细胞)的结合,成为合子(如受精卵)。再由合子发育成新个体的生殖方式。
2.脊椎动物的个体发育包括胚胎发育和胚后发育两个阶段。
3.在有性生殖中,由于两性生殖细胞分别来自不同的亲本,因此,由合子发育成的后代就具备了双亲的遗传特性,具有更强的生活能力和变异性,这对于生物的生存和进化具有重要意义。
第三章 遗传和染色体
第一节 基因的分离定律
一、相对性状
性状:生物体所表现出来的的形态特征、生理生化特征或行为方式等。
相对性状:同一种生物的同一种性状的不同表现类型。
二、孟德尔一对相对性状的杂交实验
1、实验过程(看书)
2、对分离现象的解释(看书)
3、对分离现象解释的验证:测交(看书)
例:现有一株紫色豌豆,如何判断它是显性纯合子(AA)还是杂合子(Aa)?
相关概念
1、显性性状与隐性性状
显性性状:具有相对性状的两个亲本杂交,F1表现出来的性状。
隐性性状:具有相对性状的两个亲本杂交,F1没有表现出来的性状。
附:性状分离:在杂种后代中出现不同于亲本性状的现象)
2、显性基因与隐性基因
显性基因:控制显性性状的基因。
隐性基因:控制隐性性状的基因。
附:基因:控制性状的遗传因子( DNA分子上有遗传效应的片段P67)
等位基因:决定1对相对性状的两个基因(位于一对同源染色体上的相同位置上)。
3、纯合子与杂合子
纯合子:由相同基因的配子结合成的合子发育成的个体(能稳定的遗传,不发生性状分离):
显性纯合子(如AA的个体)
隐性纯合子(如aa的个体)
杂合子:由不同基因的配子结合成的合子发育成的个体(不能稳定的遗传,后代会发生性状分离)
4、表现型与基因型
表现型:指生物个体实际表现出来的性状。
基因型:与表现型有关的基因组成。
(关系:基因型+环境 → 表现型)
5、 杂交与自交
杂交:基因型不同的生物体间相互交配的过程。
自交:基因型相同的生物体间相互交配的过程。(指植物体中自花传粉和雌雄异花植物的同株受粉)
附:测交:让F1与隐性纯合子杂交。(可用来测定F1的基因型,属于杂交)
三、基因分离定律的实质: 在减I分裂后期,等位基因随着同源染色体的分开而分离。
四、基因分离定律的两种基本题型:
 正推类型:(亲代→子代)
亲代基因型 子代基因型及比例 子代表现型及比例
⑴ AA×AA AA 全显
⑵ AA×Aa AA : Aa=1 : 1 全显
⑶ AA×aa Aa 全显
⑷ Aa×Aa AA : Aa : aa=1 : 2 : 1 显:隐=3 : 1
⑸ Aa×aa Aa : aa =1 : 1 显:隐=1 : 1
⑹ aa×aa aa 全隐
 逆推类型:(子代→亲代)
亲代基因型 子代表现型及比例
⑴ 至少有一方是AA 全显
⑵ aa×aa 全隐
⑶ Aa×aa 显:隐=1 : 1
⑷ Aa×Aa 显:隐=3 : 1
五、孟德尔遗传实验的科学方法:
 正确地选用试验材料;
 分析方法科学;(单因子→多因子)
 应用统计学方法对实验结果进行分析;
 科学地设计了试验的程序。
六、基因分离定律的应用:
1、指导杂交育种:
原理:杂合子(Aa)连续自交n次后各基因型比例
杂合子(Aa ):(1/2)n
纯合子(AA+aa):1-(1/2)n (注:AA=aa)
例:小麦抗锈病是由显性基因T控制的,如果亲代(P)的基因型是TT×tt,则:
(1)子一代(F1)的基因型是____,表现型是_______。
(2)子二代(F2)的表现型是__________________,这种现象称为__________。
(3)F2代中抗锈病的小麦的基因型是_________。其中基因型为______的个体自交后代会出现性状分离,因此,为了获得稳定的抗锈病类型,应该怎么做?
_______________________________________________________________________________________
答案:(1)Tt 抗锈病(2)抗锈病和不抗锈病 性状分离(3)TT或Tt Tt
从F2代开始选择抗锈病小麦连续自交,淘汰由于性状分离而出现的非抗锈病类型,直到抗锈病性状不再发生分离。
2、指导医学实践:
例1:人类的一种先天性聋哑是由隐性基因(a)控制的遗传病。如果一个患者的双亲表现型都正常,则这对夫妇的基因型是___________,他们再生小孩发病的概率是______。
答案:Aa、Aa 1/4
例2:人类的多指是由显性基因D控制的一种畸形。如果双亲的一方是多指,其基因型可能为___________,这对夫妇后代患病概率是______________。
答案:DD或Dd 100%或1/2
第二节 基因的自由组合定律
一、基因自由组合定律的实质:
在减I分裂后期,非等位基因随着非同源染色体的自由组合而自由组合。
(注意:非等位基因要位于非同源染色体上才满足自由组合定律)
二、自由组合定律两种基本题型:共同思路:“先分开、再组合”
 正推类型(亲代→子代)
 逆推类型(子代→亲代)
三、基因自由组合定律的应用
1、指导杂交育种:
例:在水稻中,高杆(D)对矮杆(d)是显性,抗病(R)对不抗病(r)是显性。现有纯合矮杆不抗病水稻ddrr和纯合高杆抗病水稻DDRR两个品种,要想得到能够稳定遗传的矮杆抗病水稻ddRR,应该怎么做?
_______________________________________________________________________________________

附:杂交育种
方法:杂交
原理:基因重组
优缺点:方法简便,但要较长年限选择才可获得。
2、导医学实践:
例:在一个家庭中,父亲是多指患者(由显性致病基因D控制),母亲表现型正常。他们婚后却生了一个手指正常但患先天性聋哑的孩子(先天性聋哑是由隐性致病基因p控制),问:
①该孩子的基因型为___________,父亲的基因型为_____________,母亲的基因型为____________。
②如果他们再生一个小孩,则
只患多指的占________,
只患先天性聋哑的占_________,
既患多指又患先天性聋哑的占___________,
完全正常的占_________
答案:①ddpp DdPp ddPp ②3/8, 1/8, 1/8, 3/8
四、性别决定和伴性遗传
1、XY型性别决定方式:
 染色体组成(n对):
雄性:n-1对常染色体 + XY 雌性:n-1对常染色体 + XX
 性比:一般 1 : 1
 常见生物:全部哺乳动物、大多雌雄异体的植物,多数昆虫、一些鱼类和两栖类。
2、三种伴性遗传的特点:
(1)伴X隐性遗传的特点:
① 男 > 女 ② 隔代遗传(交叉遗传) ③ 母病子必病,女病父必病
(2)伴X显性遗传的特点:
① 女>男 ② 连续发病 ③ 父病女必病,子病母必病
(3)伴Y遗传的特点:
①男病女不病 ②父→子→孙
附:常见遗传病类型(要记住):
伴X隐:色盲、血友病
伴X显:抗维生素D佝偻病
常隐:先天性聋哑、白化病
常显:多(并)指
第三节 染色体变异及其应用
一、染色体结构变异:
实例:猫叫综合征(5号染色体部分缺失)
类型:缺失、重复、倒位、易位(看书并理解)
二、染色体数目的变异
1、类型
 个别染色体增加或减少:
实例:21三体综合征(多1条21号染色体)
 以染色体组的形式成倍增加或减少:
实例:三倍体无子西瓜
2、染色体组:
(1)概念:二倍体生物配子中所具有的全部染色体组成一个染色体组。
(2)特点:①一个染色体组中无同源染色体,形态和功能各不相同;
②一个染色体组携带着控制生物生长的全部遗传信息。
(3)染色体组数的判断:
① 染色体组数= 细胞中任意一种染色体条数
例1:以下各图中,各有几个染色体组?

答案:3 2 5 1 4
② 染色体组数= 基因型中控制同一性状的基因个数
例2:以下基因型,所代表的生物染色体组数分别是多少?
(1)Aa ______ (2)AaBb _______
(3)AAa _______ (4)AaaBbb _______
(5)AAAaBBbb _______ (6)ABCD ______
答案:2 2 3 3 4 1
3、单倍体、二倍体和多倍体
由配子发育成的个体叫单倍体。
有受精卵发育成的个体,体细胞中含几个染色体组就叫几倍体,如含两个染色体组就叫二倍体,含三个染色体组就叫三倍体,以此类推。体细胞中含三个或三个以上染色体组的个体叫多倍体。
三、染色体变异在育种上的应用
1、多倍体育种:
方法:用秋水仙素处理萌发的种子或幼苗。
(原理:能够抑制纺锤体的形成,导致染色体不分离,从而引起细胞内染色体数目加倍)
原理:染色体变异
实例:三倍体无子西瓜的培育;
优缺点:培育出的植物器官大,产量高,营养丰富,但结实率低,成熟迟。
2、单倍体育种:
方法:花粉(药)离体培养
原理:染色体变异
实例:矮杆抗病水稻的培育
例:在水稻中,高杆(D)对矮杆(d)是显性,抗病(R)对不抗病(r)是显性。现有纯合矮杆不抗病水稻ddrr和纯合高杆抗病水稻DDRR两个品种,要想得到能够稳定遗传的矮杆抗病水稻ddRR ,应该怎么做?
______________________________________________________________________________________

优缺点:后代都是纯合子,明显缩短育种年限,但技术较复杂。
附:育种方法小结
诱变育种 杂交育种 多倍体育种 单倍体育种
方法 用射线、激光、化学药品等处理生物 杂交 用秋水仙素处理萌发的种子或幼苗 花药(粉)离体培养
原理 基因突变 基因重组 染色体变异 染色体变异
优缺点 加速育种进程,大幅度地改良某些性状,但有利变异个体少。 方法简便,但要较长年限选择才可获得纯合子。 器官较大,营养物质含量高,但结实率低,成熟迟。 后代都是纯合子,明显缩短育种年限,但技术较复杂。
第四章 遗传的分子基础
第一节 探索遗传物质的过程
一、1928年格里菲思的肺炎双球菌的转化实验:
1、肺炎双球菌有两种类型类型:
 S型细菌:菌落光滑,菌体有夹膜,有毒性
 R型细菌:菌落粗糙,菌体无夹膜,无毒性
2、实验过程(看书)
3、实验证明:无毒性的R型活细菌与被加热杀死的有毒性的S型细菌混合后,转化为有毒性的S型活细菌。这种性状的转化是可以遗传的。
推论(格里菲思):在第四组实验中,已经被加热杀死S型细菌中,必然含有某种促成这一转化的活性物质—“转化因子”。
二、1944年艾弗里的实验:
1、实验过程:

2、实验证明:DNA才是R型细菌产生稳定遗传变化的物质。
(即:DNA是遗传物质,蛋白质等不是遗传物质)
三、1952年郝尔希和蔡斯噬菌体侵染细菌的实验
1、T2噬菌体机构和元素组成:

2、实验过程(看书)
3、实验结论:子代噬菌体的各种性状是通过亲代的DNA遗传的。(即:DNA是遗传物质)
四、1956年烟草花叶病毒感染烟草实验证明:在只有RNA的病毒中,RNA是遗传物质。
五、小结:
细胞生物
(真核、原核) 非细胞生物
(病毒)
核酸 DNA和RNA DNA RNA
遗传物质 DNA DNA RNA
因为绝大多数生物的遗传物质是DNA,所以DNA是主要的遗传物质。
第二节 DNA的结构和DNA的复制
一、DNA的结构
1、DNA的组成元素:C、H、O、N、P
2、DNA的基本单位:脱氧核糖核苷酸(4种)
3、DNA的结构:
①由两条、反向平行的脱氧核苷酸链盘旋成双螺旋结构。
②外侧:脱氧核糖和磷酸交替连接构成基本骨架。
内侧:由氢键相连的碱基对组成。
③碱基配对有一定规律: A = T;G ≡ C。(碱基互补配对原则)
4、DNA的特性:
①多样性:碱基对的排列顺序是千变万化的。(排列种数:4n(n为碱基对对数)
②特异性:每个特定DNA分子的碱基排列顺序是特定的。
5、DNA的功能:携带遗传信息(DNA分子中碱基对的排列顺序代表遗传信息)。
6、与DNA有关的计算:
在双链DNA分子中:
① A=T、G=C
②任意两个非互补的碱基之和相等;且等于全部碱基和的一半
例:A+G = A+C = T+G = T+C = 1/2全部碱基
二、DNA的复制
1、概念:以亲代DNA分子两条链为模板,合成子代DNA的过程
2、时间:有丝分裂间期和减Ⅰ前的间期
3、场所:主要在细胞核
4、过程:(看书)①解旋 ②合成子链 ③子、母链盘绕形成子代DNA分子
5、特点: 半保留复制
6、原则:碱基互补配对原则
7、条件:
①模板:亲代DNA分子的两条链
②原料:4种游离的脱氧核糖核苷酸
③能量:ATP
④ 酶:解旋酶、DNA聚合酶等
8、DNA能精确复制的原因:
①独特的双螺旋结构为复制提供了精确的模板;
②碱基互补配对原则保证复制能够准确进行。
9、意义:
DNA分子复制,使遗传信息从亲代传递给子代,从而确保了遗传信息的连续性。
10、与DNA复制有关的计算:
复制出DNA数 =2n(n为复制次数)
含亲代链的DNA数 =2
第三节 基因控制蛋白质的合成
一、RNA的结构:
1、组成元素:C、H、O、N、P
2、基本单位:核糖核苷酸(4种)
3、结构:一般为单链
二、基因:是具有遗传效应的DNA片段。主要在染色体上
三、基因控制蛋白质合成:
1、转录:
(1)概念:在细胞核中,以DNA的一条链为模板,按照碱基互补配对原则,合成RNA的过程。(注:叶绿体、线粒体也有转录)
(2)过程(看书)
(3)条件:模板:DNA的一条链(模板链)
原料:4种核糖核苷酸
能量:ATP
酶:解旋酶、RNA聚合酶等
(4)原则:碱基互补配对原则(A—U、T—A、G—C、C—G)
(5)产物:信使RNA(mRNA)、核糖体RNA(rRNA)、转运RNA(tRNA)
2、翻译:
(1)概念:游离在细胞质中的各种氨基酸,以mRNA为模板,合成具有一定氨基酸顺序的蛋白质的过程。(注:叶绿体、线粒体也有翻译)
(2)过程:(看书)
(3)条件:模板:mRNA
原料:氨基酸(20种)
能量:ATP
酶:多种酶
搬运工具:tRNA
装配机器:核糖体
(4)原则:碱基互补配对原则
(5)产物:多肽链
3、与基因表达有关的计算
基因中碱基数:mRNA分子中碱基数:氨基酸数 = 6:3:1
四、基因对性状的控制
1、中心法则

2、基因控制性状的方式:
(1)通过控制酶的合成来控制代谢过程,进而控制生物的性状;
(2)通过控制蛋白质结构直接控制生物的性状。
五、人类基因组计划及其意义
计划:完成人体24条染色体上的全部基因的遗传作图、物理作图、和全部碱基的序列测定。
意义:可以清楚的认识人类基因的组成、结构、功能极其相互关系,对于人类疾病的诊治和预防具有重要的意义
第四节 基因突变和基因重组
一、生物变异的类型
 不可遗传的变异(仅由环境变化引起)
 可遗传的变异(由遗传物质的变化引起)
基因突变
基因重组
染色体变异
二、可遗传的变异
(一)基因突变
1、概念:是指DNA分子中碱基对的增添、缺失或改变等变化。
2、原因:物理因素:X射线、激光等;
化学因素:亚硝酸盐,碱基类似物等;
生物因素:病毒、细菌等。
3、特点:
①发生频率低:
② 方向不确定
③随机发生
基因突变可以发生在生物个体发育的任何时期;
基因突变可以发生在细胞内的不同的DNA分子上或同一DNA分子的不同部位上。
④普遍存在
4、结果:使一个基因变成它的等位基因。
5、时间:细胞分裂间期(DNA复制时期)
6、应用——诱变育种
①方法:用射线、激光、化学药品等处理生物。
②原理:基因突变
③实例:高产青霉菌株的获得
④优缺点:加速育种进程,大幅度地改良某些性状,但有利变异个体少。
7、意义:
①是生物变异的根本来源;
②为生物的进化提供了原始材料;
③是形成生物多样性的重要原因之一。
(二)基因重组
1、概念:是指生物体在进行有性生殖的过程中,控制不同性状的基因重新组合的过程。
2、种类:
①减数分裂(减Ⅰ后期)形成配子时,随着非同源染色体的自由组合,位于这些染色体上的非等位基因也自由组合。组合的结果可能产生与亲代基因型不同的个体。
②减Ⅰ四分体时期,同源染色体上(非姐妹染色单体)之间等位基因的交换。结果是导致染色单体上基因的重组,组合的结果可能产生与亲代基因型不同的个体。
③重组DNA技术
(注:转基因生物和转基因食品的安全性:用一分为二的观点看问题,用其利,避其害。我国规定对于转基因产品必须标明。)
3、结果:产生新的基因型
4、应用(育种):杂交育种(见前面笔记)
5、意义:①为生物的变异提供了丰富的来源;
②为生物的进化提供材料;
③是形成生物体多样性的重要原因之一
(三)染色体变异(见第三章 第三节)
第五节 关注人类遗传病
一、人类遗传病与先天性疾病区别:
 遗传病:由遗传物质改变引起的疾病。(可以生来就有,也可以后天发生)
 先天性疾病: